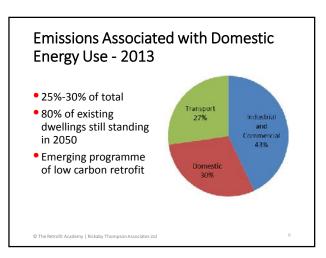
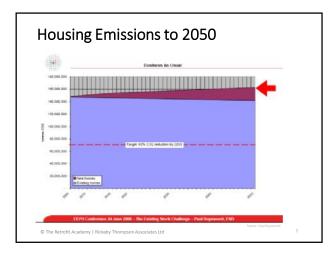
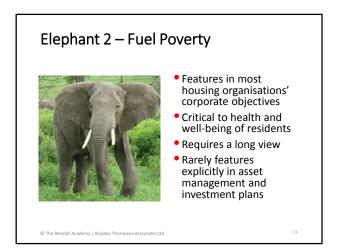

NIHE | NHMF retrofit seminar 22 February 2017

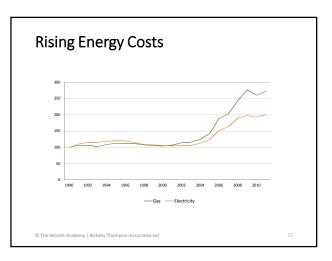

THE RETROFIT ACADEMY



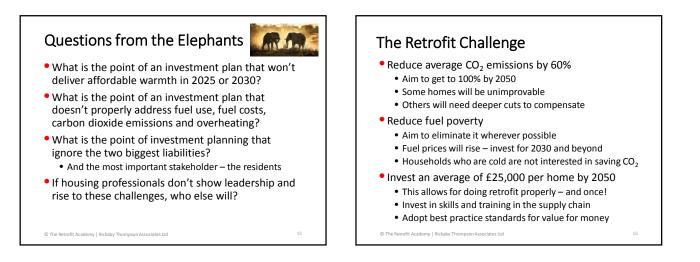


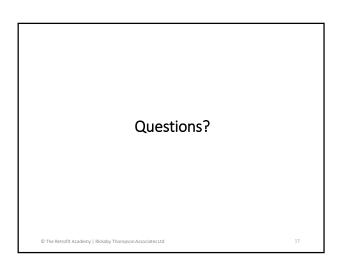






Fuel Poverty in the UK


Scotland, Wales and Northern Ireland still use the >10% definition so UK estimates also still use this:


	No. of homes	Percentage
England	2.73 million	12%
Scotland	0.94 million	39%
Wales	0.4 million	30%
Northern Ireland	0.3 million	42%
Total	4.5 million	17%
© The Retrofit Academy Rickaby Thomp	A (A (A (A	

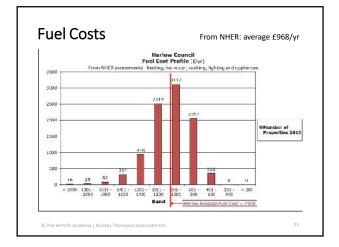
Fuel Poverty

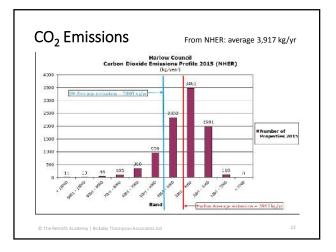
- Highest percentages in households
 - on pre-payment meters
 - in solid wall homes
 - not on mains gas
- Typical response and consequences
 - Under-heating and under-ventilation
 - Condensation, mould growth
 - Unhealthy homes: respiratory illnesses, hypothermia
- The fuel poverty challenge
 - Protect residents from social impact of rising fuel prices
 - Ensure robust supplies of heat and power
 - Power accounts for 40-50% of fuel costs and emissions

© The Retrofit Academy | Rickaby Thompson Associates Ltd

NIHE | NHMF retrofit seminar 22 February 2017

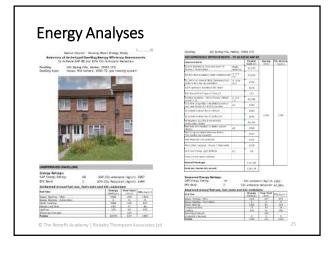
Housing Stock Energy Study


- Investigate the implications of proposed standards • Typically SAP 80 and 50% emissions reduction (C50)
- Assess the whole stock and establish KPIs Stock profiles and averages updated to track investment
- Identify dwelling types and analyse them in detail • Costed, medium term retrofit plan for every type
- Scale up to the whole stock

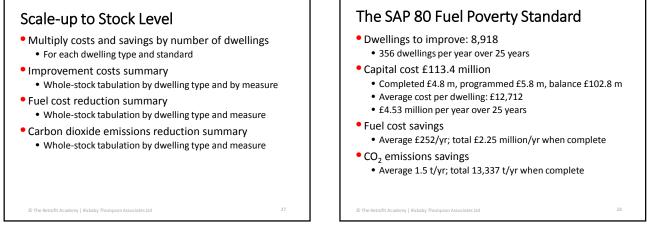

C The Retrofit Academy | Rickaby Thompson Associates Ltd

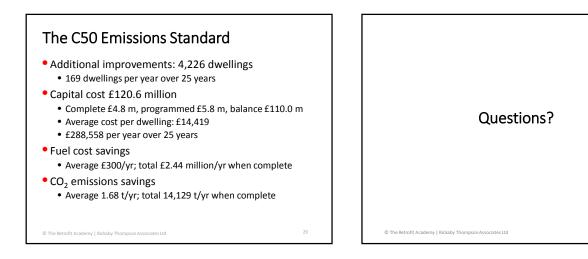
- Capital costs by dwelling type, measure and standard Savings of fuel use, fuel costs and emissions
- Estimate the potential for external funding

The following slides present example output from Harlow Council's HSES

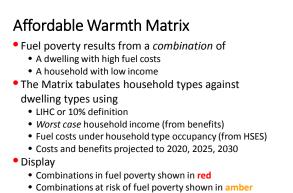

SAP Profile Average SAP 68 Harlow Council SAP Profile 2015 600 con. 400 Number of Properties 201 300 200 1000 17 20 - 29

Dwelling Types Stock KPIs • 28 dwelling types Average SAP 68 • Range <10 (12 dwellings) to >90 (6 dwellings) Average fuel cost (NHER) £968/yr • Range > £2,000/yr (18 dwellings) to <£600/yr (352) Heating systems Average CO₂ emissions (NHER) 3,917 kg/yr • Range >10,000 (11 dwellings) to <2,000 (118) Detailed analyses

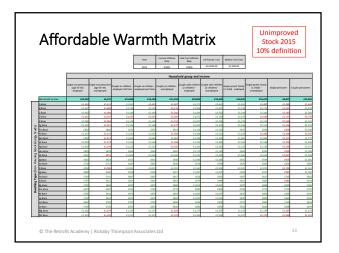

- 4 houses, 1 bungalow, 21 flats, 2 maisonettes
- 3 variants of each flat, 2 variants of maisonette
- Representing 9,416 dwellings
- All individual gas-fired systems except:
- 6 types with communal heating, 7 with electric heating
- Made with NHER Plan Assessor v6.1 (SAP 2012)
- As existing and with improvements to SAP 80 and C50
- Assumed capital costs, multiple improvement options
- 35 improvement packages evaluated altogether

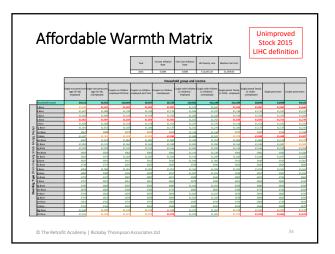


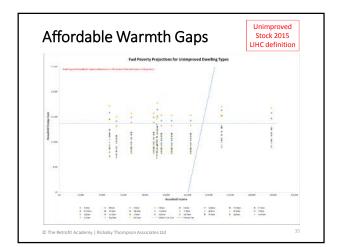
Energy Analyses


Improvement		Capital -	Seeing .	CO, Seving
Miscafcking - associated with PV3	10	1400		1.1.1
N's Phoenolitaica (inducing imaniar)	SCIEN	\$1,558	(54	214
Overall Package		11,938		
Coat per tenne CO ₂ moved	78,892			
Impressed annual fund use, fael o	onts and C			120201
	osis and C	Energy	Fael Cast	co.oshut
and two	osis and C	Evergy (Cortype)	Fael Cast (Chr)	ce ₂ (+3/3+)
and Dee Access MacFird - Mart	oots and C	Energy	Fael Cast	60 ₆ (k ₁ k ₁ k ₁ k) 195
und Use Jose Hading - Math Jose Hading - Secondary	onts and C	654092 (62092/01) 4515 6	Fael Cast 30/20 157	975 0
and the pose Harding - Heat Scool Harding - Secondary Malar Descala	usts and C	6-engy (6-045741) 4515	Fael Cast (7/91) 157 1 10	
and two proce the first - first the proce the first - Secondary finder metrics website and first	usts and C	644493 (6399274) 4515 6 2255	Fact Cast 3(2)() 157 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	935 0 214
Improved annual fund use, fael or and two Spece Healing, Secretary Halo neuropy Halo neuropy webs and face sandary Sandary Concess	usts and C	644493 (6396271) 4535 6 2296 2396 2396 239	Fael Cast 3(7)(1) 157 8 80 16	975 0 114 38
and two Spece Harding - Mail Spece Harding - Secondary Hubs Description Webby and Net	uels and C	63962701 63962701 4515 6 2256 2256 25 25 20 20	Fact Cast 3(2)() 157 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 0 114 38

- The analyses create a medium-term low carbon improvement plan for each dwelling type
- NHER Plan Assessor software and database can be used to evaluate other options







Combinations with affordable warmth shown in green

© The Retrofit Academy | Rickaby Thompson Associates Ltd

THE RETRO<mark>F</mark>IT ACADEMY

NIHE | NHMF retrofit seminar 22 February 2017

Whole House Retrofit

- 50% 60% emissions reduction requires
 - Insulation and air-tightness
 Floors, walls, windows, roofs
 - Efficient and responsive building services
 - Ventilation, heating, hot water, lighting
 Renewable / LZC technologies
 - Solar water heating, solar PV
- Typical whole house retrofit cost £25,000
 Few householders or landlords can afford this
 - Few householders or landlords
 Other priorities intervene, e.g.
 - New kitchens and bathrooms
 - Repairs, redecoration, new floor finishes
 - Care for elderly relatives
 - · Children's' college fees, etc.

C The Retrofit Academy | Rickaby Thompson Associates Ltd

Medium-Term Whole House Retrofit Plan A 20-30 year plan for retrofit Based on detailed assessment Identifies applicable measures 'Shopping list' of improvements Identifies priorities

- Fabric first, quick wins
- Identifies combinations
 External wall insulation with new windows
- Preserves opportunities for the future
- Extend eaves for EWI when re-roofing
- Install dual-coil HWC for future solar water heating

38

Plan may be 'lodged' like an EPC

© The Retrofit Academy | Rickaby Thompson Associates Ltd

Retrofit Strategies

Fabric first

- **1**. Improve the building fabric
 - To minimise heat losses and maximise air tightness
 Insulation is relatively inexpensive and has a long life
 - Install officiant and reconnective building convice
- 2. Install efficient and responsive building servicesTo satisfy energy demand efficiently
 - Services have short lives and are replaced regularly
- 3. Use renewable energy technologies
 - To reduce emissions to the target level
 - Renewable systems are expensive and short-lived

© The Retrofit Academy | Rickaby Thompson Associates Ltd

Retrofit Strategies

Concentrate on the interfaces

Between building elements

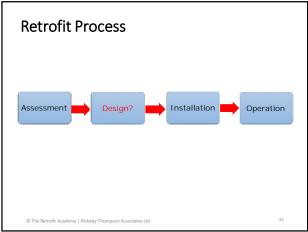
- Corners, junctions, edges and around openingsKey risks: thermal bridging and air leakage
- Between building fabric and building services
 - Ventilation system compatible with air permeability
 Heating system compatible with heat loss
- Between the building and the occupants
 - Functions of systems explained and understood
 - Controls user-friendly and understood
 - How to get the best performance explained

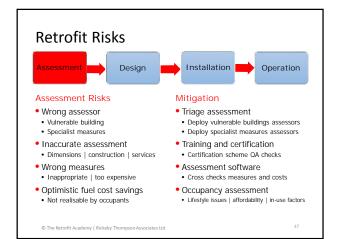
© The Retrofit Academy | Rickaby Thompson Associates Ltd

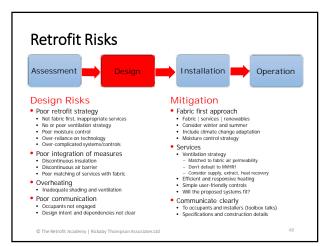
Questions?

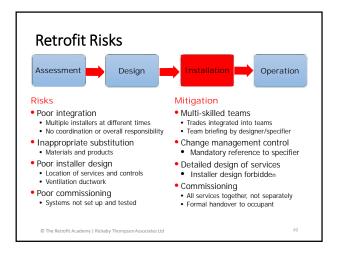
NIHE | NHMF retrofit seminar 22 February 2017

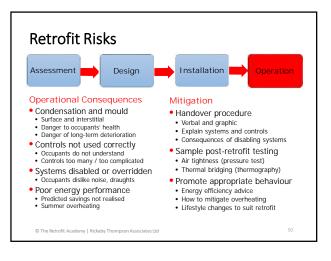
Managing Retrofit Risk

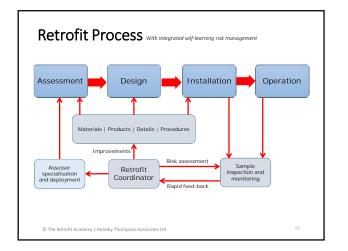

- Why do retrofit projects rarely deliver the predicted cuts in fuel costs and emissions?
- What contributes to the 'performance gap'?
 What are the risks of building-in defects?
 How can we mitigate those risks?
- What are the key points to watch out for?
 At each stage of the retrofit process
- Where are the risks?
 Understand the retrofit process
- How do we mitigate them?
 Modify and strengthen the process

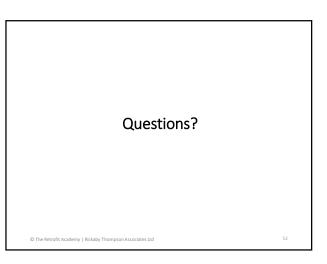

© The Retrofit Academy | Rickaby Thompson Associates Ltd

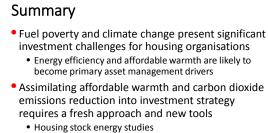

Where does retrofit go wrong?

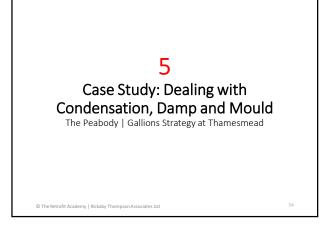

- At the corners, junctions and edges
 Where building elements meet and around openings
- At the interfaces between fabric and services
 Matching systems to heat loss and air permeability
- At the interfaces between systems and people
 Commissioning, handover, control, maintenance











- Affordable warmth matrices

© The Retrofit Academy | Rickaby Thompson As

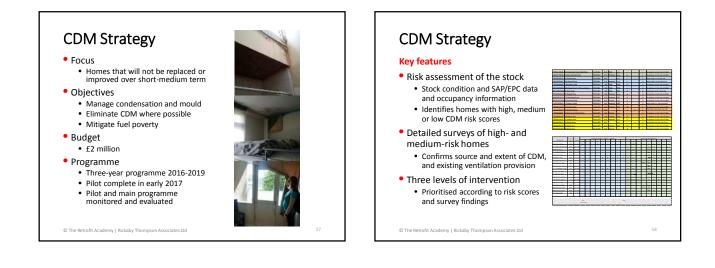
- Retrofit has technical risks that can be managed
 - Adopt a robust strategies and a systematic approach
 - Use emerging best practice standards and specifications

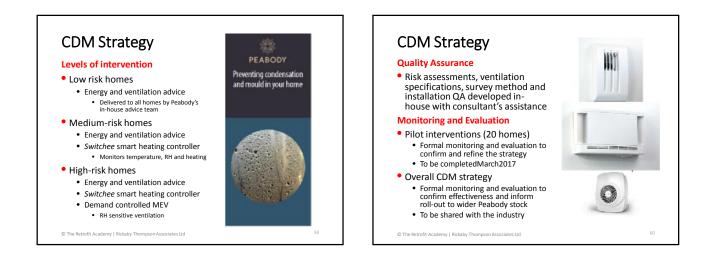
NIHE | NHMF retrofit seminar 22 February 2017

Thamesmead

- Built by GLC in 1960s and 1970s
 - Subsequent LSVT to Gallions HA
 Recent Gallions-Peabody merger
- Over 4500 homes
- High-rise tower blocks
- Medium-rise deck access blocks
 DC accel construction
- PC panel construction
 DH replaced by individual gas-
- fired CH systems by Gallions

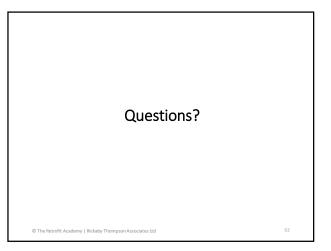
 Limited other investment
- Backlog of repairs and maintenance
- Extensive fuel poverty
 - Under-heated and under-ventilated
 - Condensation, damp and mould
- C The Retrofit Academy | Rickaby Thompson Associates Ltd




Thamesmead

- Crossrail terminus at Abbey Wood heralds regeneration
 Increasing land values
- Peabody | Gallions £1 billion
- regeneration programmeEnvironmental improvements
- Some demolition (worst homes)
- Many new homes
- Comprehensive refurbishment of existing homes
- Some existing homes may not be replaced or improved over shortmedium term

© The Retrofit Academy | Rickaby Thompson Associates Ltd



Summary

- The Thamesmead CDM strategy adopts a systematic, measured and evidence-based approach to the consequences of fuel poverty
- It makes use of the latest 'smart' heating controls and demand-controlled ventilation
- It is a ground-breaking initiative to improve on the 'just stick in a fan' approach that has been common in social housing
- The approach would apply equally well to any housing stock with extensive condensation, damp and mould

